CHARACTERISTICS OF FRACTURE SURFACE AND FATIGUE RESISTANCE IN ASTM A36 STEEL PRESSURE VESSEL MATERIAL

Main Article Content

Ikbal Azhari
Hendri Chandra
Ozkar F. Homzah
Tri Satya Ramadhoni
Rachmat Dwi Sampurno

Abstract

Pressure vessels are equipment in the industrial field to hold pressurized fluids, such as gas, oil and chemicals, ASTM A36 steel is one type of material that can be used in pressure vessels, this steel has good mechanical properties but still has limitations in its fatigue resistance. Pressure vessels receive internal and external loads, this pressure difference results in stress on the wall (shell). This stress can cause material damage, therefore the author conducted fatigue repeated bending and Scanning electron microscopy (SEM) testing to analyze fatigue resistance and fracture surface characteristics. Fatigue testing of 4 specimens with angle variations of 4˚, 8˚, 11˚ and 13˚ resulted in a cycle count of 1490200 cycles, 400050 cycles, 234200 cycles and 99000 cycles respectively. SEM results of the fracture surface of the 4˚ and 13˚ testing angles of ASTM A36 steel showed striation and microvoid coalescence and crack propagation indicating that the fatigue failure that occurred was ductile fracture. Based on the conclusions obtained, it shows that the number of cycles is influenced by the testing stress, which means that at high stresses, the life time of the pressure vessel will be smaller and vice versa.

Downloads

Download data is not yet available.

Article Details

How to Cite
Azhari, I., Chandra, H., Homzah, O. F., Ramadhoni, T. S., & Sampurno, R. D. (2024). CHARACTERISTICS OF FRACTURE SURFACE AND FATIGUE RESISTANCE IN ASTM A36 STEEL PRESSURE VESSEL MATERIAL. AUSTENIT, 16(1), 42–47. https://doi.org/10.5281/zenodo.11403148
Section
Articles

References

ASME. (2015). SECTION II Part A Ferrous Material Specifications (SA-451 to End) 2015 ASME Boiler and Pressure Vessel Code An International Code.

ASME. (2019). SECTION VIII Rules for Construction of Pressure Vessels 2019 ASME Boiler and Pressure Vessel Code An International Code. https://www.asme.org/shop/certification-accreditation.

ASTM. (2008). Standard Specification for Carbon Structural Steel’. www.astm.

Bharati, M., Maity, R., Singh, A., & Paul, S. K. (2024). The fatigue crack growth behavior of hydrogenated 9Cr-1Mo steel: An experimental and numerical study. Fatigue & Fracture of Engineering Materials & Structures, 47(5), 1677–1695. https://doi.org/https://doi.org/10.1111/ffe.14267

Chandra, H. (2019). Analisis Kegagalan Material. UPT. Penerbit dan Percetakan.

Chandra, H., Ammarullah, M. I., Marwani, M., Ellyanie, E., Warizal, W., Aditya, D., Pratiwi, D. K., & Utami, N. P. E. (2024). Preventing environmental and health problems due to LPG transport tank leaks: fatigue and crack behavior of heat-treated steel investigation. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2304491

Darmo, S., Soenoko, R., Siswanto, E., & Widodo, T. D. (2018). Study on mechanical properties of pack carburizing SS400 steel with energizer pomacea canalikulata lamarck shell powder. International Journal of Mechanical Engineering and Technology, 9(5), 14–23. https://doi.org/10.30574/gjeta.2022.11.2.0087

H. O. Fuchs, & Stephens, R. I. (1980). Metal Fatigue In Engineering. John Willey & Sons.

Hafidz, M. D., & Chandra, H. (2023). Karakteristik patah dan ketahanan lelah besi cor malleable. 14(1), 307–315. https://doi.org/10.21776/jrm.v14i1.1292

Humaidi, M. H., Suryono, A. F., & Hestiawan, H. (2022). Pengaruh Variasi Arus Listrik Terhadap Nilai Kekerasan Hasil Lasan Baja ASTM A36 Variation Effect of Electrical Current on The Hardness Value of ASTM A36 Steel Welding (Vol. 6, Issue 1). https://doi.org/10.33369/rekayasamekanika.v6i1.25451

Li, H. F., liu, Y. Q., Zhang, P., & Zhang, Z. F. (2023). A full-stage fatigue crack growth model for metallic materials. International Journal of Fatigue, 172, 107662. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2023.107662

Megyesy, E. F. (2008). Pressure vessel handbook. Pressure Vessel Pub.

Moss, D., & Basic, M. (2013). Pressure_Vessel_Design_Manual. 1–832.

Nugraha, H., Kusumaningtyas, I., & Miasa, I. M. (2022). Analisis Buckling dan Tegangan Bejana Tekan Horisontal pada Tekanan Kerja Eksternal. Journal of Mechanical Design and Testing, 4(2), 58. https://doi.org/10.22146/jmdt.63592

Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424–483. https://doi.org/https://doi.org/10.1016/j.actamat.2015.12.034

Pratowo, B., & Apriansyah, N. (2016). Analisis Kekuatan Fatik Baja Karbon Rendah SC10 Dengan Tipe Rotary Bending. 2, 49–58.

Schneller, W., Leitner, M., Maier, B., Grün, F., Jantschner, O., Leuders, S., & Pfeifer, T. (2022). Artificial intelligence assisted fatigue failure prediction. International Journal of Fatigue, 155, 106580. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2021.106580

Siswanto, B., Teknik Mesin, J., Teknik, F., Wastukancana, S., & Cikopak No, J. (2021). Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan. 10(01), 37–44.

Suryana, D., Sani, A. A., & Sepriyanto, D. (2015). Pengaruh Dept of Cut Dan Feedrate Dengan Cutter Diameter 60 Mm Terhadap Kerataan Permukaan Material Astm a36 Pada Mesin Mitsubishi Cnc-Mill 3a. Jurnal Austenit, 7(April), 1–6. https://doi.org/https://doi.org/10.5281/zenodo.4547522

Wciślik, W., & Lipiec, S. (2022). Void-Induced Ductile Fracture of Metals: Experimental Observations. In Materials (Vol. 15, Issue 18). MDPI. https://doi.org/10.3390/ma15186473

Wiryosumarto, H., & Okumura, T. (2000). Teknologi Pengelasan Logam.

Most read articles by the same author(s)