THE EFFECT OF DIFFERENT STRUCTURE AND GRADIENT INFILL ON MECHANICAL BEHAVIOR POLYLACTIDE ACID MATERIALS (PLA)

Authors

  • Imam Akbar Universitas Tridinanti Palembang
  • M Rizky Hidayat Universitas Tridinanti Palembang
  • Dewi Rawani Universitas Tridinanti Palembang
  • Rita Maria Veranika Universitas Tridinanti Palembang
  • Hariman Al-Faritzie Universitas Tridinanti Palembang
  • Romli Romli Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.53893/austenit.v15i1.6631

Keywords:

infill, gradient, poly lactid acid, 3D Printing

Abstract

The purpose of this study is to analyze the effect of our gradient infill on the mechanical behavior of polylactide acid (PLA) materials resulting from 3d printing, which has an impact on the efficiency of material use while still providing good mechanical support. In this study, the specimens were designed using nTopology software and there were 4 variations of the structure, namely square, honeycomb, diamond, and gyroid, each of which was made gradient and non-gradient, then a bending test was carried out to determine its mechanical behavior thats PLA materials. The results of this study indicate that a comparison between specimens with gradient and non-gradient models with 50% porosity can increase the deflection of the specimen, namely square 15.7-19.1 mm, honeycomb 16.3-20.6 mm, Diamond 19.7-21.8 mm, and gyroid 20.3-22.1 mm, with an average deflection of 2.04 mm. In addition, there is a linear correlation of the relationship between thickness to deflection and flexural modulus whereas the thickness value increases, the deflection and flexural modulus will increase. The conclusion of this research is that giving a gradient to the structure can improve mechanical behavior, especially deflection.

Downloads

Download data is not yet available.

References

Akbar, I., King, M. L., Fatoni, Z., Sianipar, T. P. O., & Prakoso, A. T. (2023). Numerical Investigation of the Effect Infill from Different Unit cells Structure on Mechanical Behaviour. 3(1), 52–57.

Akbar, I., Prakoso, A. T., Astrada, Y. M., Sofyan Sinaga, M., Ammarullah, M. I., Adanta, D., Mataram, A., Syahrom, A., Jamari, J., & Basri, H. (2021). Permeability Study of Functionally Graded Scaffold Based on Morphology of Cancellous Bone. Malaysian Journal of Medicine and Health Sciences, 17, 60–66.

ASTM INTERNATIONAL. (2002). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790. Annual Book of ASTM Standards, i, 1–12. https://doi.org/10.1520/D0790-17.2

ERYILDIZ, M. (2021). Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation. European Mechanical Science, 5(3), 116–120. https://doi.org/10.26701/ems.881254

Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2015.0036

Johnson, G. A., & French, J. J. (2018). Evaluation of Infill Effect on Mechanical Properties of Consumer 3D Printing Materials. Advances in Technology Innovation, 3(4), 179–184.

Martín, M. J., Auñón, J. A., & Martín, F. (2021). Influence of infill pattern on mechanical behavior of polymeric and composites specimens manufactured using fused filament fabrication technology. Polymers. https://doi.org/10.3390/polym13172934

Mensah, R. A., Edström, D. A., Lundberg, O., Shanmugam, V., Jiang, L., Qiang, X., Försth, M., Sas, G., Hedenqvist, M., & Das, O. (2022). The effect of infill density on the fire properties of polylactic acid 3D printed parts: A short communication. Polymer Testing, 111(April), 0–2. https://doi.org/10.1016/j.polymertesting.2022.107594

Prakoso, A. T., Basri, H., Adanta, D., Yani, I., Ammarullah, M. I., Akbar, I., Ghazali, F. A., Syahrom, A., & Kamarul, T. (2023). The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines, 11(2), 427. https://doi.org/10.3390/biomedicines11020427

Shanmugam, V., Das, O., Neisiany, R. E., Babu, K., Singh, S., Hedenqvist, M. S., Berto, F., & Ramakrishna, S. (2020). Polymer Recycling in Additive Manufacturing: an Opportunity for the Circular Economy. Materials Circular Economy. https://doi.org/10.1007/s42824-020-00012-0

Shubham, P., Sikidar, A., & Chand, T. (2016). The Influence of Layer Thickness on Mechanical Properties of the 3D Printed ABS Polymer by Fused Deposition Modeling Thea Influence of Layer Thickness on Mechanical Properties of the 3D Printed ABS Polymer by Fused Deposition Modeling. August, 1–6. https://doi.org/10.4028/www.scientific.net/KEM.706.63

Soufivand, A. A., Abolfathi, N., Hashemi, S. A., & Lee, S. J. (2020). Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis. Additive Manufacturing, 33(February). https://doi.org/10.1016/j.addma.2020.101181

Tanveer, M. Q., Haleem, A., & Suhaib, M. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Applied Sciences. https://doi.org/10.1007/s42452-019-1744-1

Torres, J., Cole, M., Owji, A., DeMastry, Z., & Gordon, A. P. (2016). An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyping Journal. https://doi.org/10.1108/RPJ-07-2014-0083

Trachtenberg, J. E., Mountziaris, P. M., Miller, J. S., Wettergreen, M., Kasper, F. K., & Mikos, A. G. (2014). Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A. https://doi.org/10.1002/jbm.a.35108

Zamheri, A., Arifin, F., & Syahputra, A. P. (2020). STUDI PENYUSUTAN PEMBUATAN GIGI PALSU DENGAN 3D PRINTING FDM PENDEKATAN METODE TAGUCHI. AUSTENIT, 12(2), 43–47. https://doi.org/10.5281/zenodo.4547840

Zhao, H., Li, L., Ding, S., Liu, C., & Ai, J. (2018). Effect of porous structure and pore size on mechanical strength of 3D-printed comby scaffolds. Materials Letters, 223, 21–24. https://doi.org/10.1016/j.matlet.2018.03.205

Downloads

Published

2023-05-19

How to Cite

Akbar, I., Hidayat, M. R., Rawani, D., Veranika, R. M., Al-Faritzie, H., & Romli, R. (2023). THE EFFECT OF DIFFERENT STRUCTURE AND GRADIENT INFILL ON MECHANICAL BEHAVIOR POLYLACTIDE ACID MATERIALS (PLA). AUSTENIT, 15(1), 49–54. https://doi.org/10.53893/austenit.v15i1.6631

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.