PENYULUHAN SKRINING GIZI DASAR SECARA MANDIRI BERBASIS KECERDASAN BUATAN MACHINE LEARNING PADA SISWA SMA

Penulis

  • Imam Syafii ITSK Sugeng Hartono
  • Alfan Ridha Institut Teknologi Sains dan Kesehatan Sugeng Hartono
  • Vioresta Steffiandry Institut Teknologi Sains dan Kesehatan Sugeng Hartono
  • Rafli Yunan Suryatama Institut Teknologi Sains dan Kesehatan Sugeng Hartono

DOI:

https://doi.org/10.36257/apts.v6i2.6826

Kata Kunci:

Gizi, Skrining Gizi, Kecerdasan Buatan, Machine Learning, nutritional, screening nutritional, artificial intelligent, machine learning

Abstrak

Nutritional status is an indicator of success in meeting nutritional needs, especially shown in achieving weight according to age. Good nutritional status if the nutritional intake is in accordance with the needs of the body. Lack of nutrient intake in food can cause malnutrition, while excess nutrient intake will result in over nutrition. Lack of knowledge of Widya Wacana Christian High School students related to knowledge regarding the importance of applied nutrition such as patterns and nutritional intake in food, sanitation and hygiene, and complementary foods for breastfeeding impact on body growth and development. Providing nutritional status analysis can involve technology in the form of artificial intelligence. Data processing related to cases that have occurred before in technology using machine learning. Application of technology in providing web-based nutritional status screening analysis. The application of web-based system technology used by Widya Wacana Christian High School can have an effect on students in the form of providing quick and accurate analysis and can provide suggestions to reduce the impact on the occurrence of illness and death related to nutritional

Referensi

L. Mamuroh, S. Sukmawati, and R. Widiasih, “Pengetahuan Ibu Hamil tentang Gizi Selama Kehamilan pada Salah Satu Desa di Kabupaten Garut,†J. Ilm. Keperawatan Sai Betik, vol. 15, no. 1, p. 66, 2019, doi: 10.26630/jkep.v15i1.1544.

A. Sulistyawati, “Faktor Risiko Kejadian Gizi Buruk pada Balita Di Dusun Teruman Bantul,†J. Kesehat. Madani Med., vol. 10, no. 1, pp. 13–19, 2019, [Online]. Available: http://jurnal.akbiduk.ac.id/assets/doc/190214014918-3. FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN STUNTING PADA BALITA.pdf.

L. Sitoayu, D. A. Pertiwi, and E. Y. Mulyani, “Kecukupan zat gizi makro, status gizi, stres, dan siklus menstruasi pada remaja,†J. Gizi Klin. Indones., vol. 13, no. 3, p. 121, 2017, doi: 10.22146/ijcn.17867.

R. A. POHAN, “Hubungan Antara Status Gizi Dengan Tumbuh Kembang Anak Usia 1-3 Tahun (Toodler) Di Puskesmas Semula Jadi Kota Tanjungbalai Tahun 2019,†J. Ilm. Kohesi, vol. 5, no. 1, pp. 1–14, 2020, [Online]. Available: https://kohesi.sciencemakarioz.org/index.php/JIK/article/download/213/213.

P. Lestari, “Hubungan Pengetahuan Gizi, Asupan Makanan dengan Status Gizi Siswi Mts Darul Ulum,†Sport Nutr. J., vol. 2, no. 2, pp. 73–80, 2020, doi: 10.15294/spnj.v2i2.39761.

T. Astika et al., “EDUKASI KEMANANAN PANGAN DAN GIZI BAGI KADER POSYANDU PADA MASA PANDEMI COVID-19,†vol. 6, pp. 64–71, 2023.

J. Hadisuyitno, C. Cerdasari, and B. D. Riyadi, “HUBUNGAN PENGETAHUAN GIZI SEIMBANG DAN POLA KONSUMSI MAKAN MAHASISWA Balanced nutritional knowledge relationship and Students’ eat consumption patterns,†J. Gizi KH, vol. 2021, no. 1, pp. 28–32, 2021.

H. Hadj-Mabrouk, “Application of Case-Based Reasoning to the safety assessment of critical software used in rail transport,†Saf. Sci., vol. 131, no. July, p. 104928, 2020, doi: 10.1016/j.ssci.2020.104928.

A. Fathurohman, “Machine Learning untuk pendidikan: Mengapa dan Bagaimana,†J. Inform. dan Teknol. Komput., vol. 1, no. 3, pp. 57–62, 2021, [Online]. Available: https://journal.amikveteran.ac.id/index.php/jitek Halaman.

S. Eddamiri, E. M. Zemmouri, and A. Benghabrit, “An improved RDF data Clustering Algorithm,†Procedia Comput. Sci., vol. 148, pp. 208–217, 2019, doi: 10.1016/j.procs.2019.01.038.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

J. Fix, H. Frezza-Buet, M. Geist, and F. Pennerath, “Machine Learning.pdf.†.

M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “Application of Machine Learning in Determining the Classification of Children’S Nutrition With Decision Tree,†J. Tek. Inform., vol. 3, no. 5, pp. 1457–1465, 2022, doi: 10.20884/1.jutif.2022.3.5.599.

R. Hikmatulloh, H. M. Putri, and Q. Aini, “Penerapan Decision Tree untuk Prediksi Kepuasan Pengguna Bus Transjakarta,†Innov. Res. Informatics, vol. 2, no. 2, pp. 40–46, 2020, doi: 10.37058/innovatics.v2i2.2014.

M. Solehuddin, W. A. Syafei, and R. Gernowo, “Metode Decision Tree untuk Meningkatkan Kualitas Rencana Pelaksanaan Pembelajaran dengan Algoritma C4.5,†J. Penelit. dan Pengemb. Pendidik., vol. 6, no. 3, pp. 510–519, 2022, doi: 10.23887/jppp.v6i3.52840.

R. J. Fitriani, L. N. Hasanah, and P. S. Gizi, “Gambar 1 : Tahapan Kegiatan,†vol. 3, pp. 1–4, 2020.

M. Setyowati and R. Astuti, “Mapping the Nutritional Status of Children in Support of,†J. Kesehat. Masy., vol. 10, no. 2, pp. 110–121, 2015, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/kemas/article/view/3371.

A. Wali, S. Bahari, R. F. Maulana, K. Monika, and D. Pertiwi, “E-POSYANDU : SISTEM PENGARSIPAN POSYANDU GUNA EFISIENSI Abstrak Abstrak,†vol. 5, pp. 98–104, 2022.

Unduhan

Diterbitkan

2023-06-27

Artikel Serupa

1 2 3 4 5 6 7 8 9 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.