STUDY OF EXHAUST GAS RESIDUAL HEAT CONVERSION HRSG PLTGU KERAMASAN TO ELECTRICAL ENERGY WITH GENERATOR THERMOELECTRIC TECHNOLOGY

Authors

  • Hari Firmansah Mahasiswa Magister Teknik, Jurusan Teknik Mesin, Universitas Sriwijaya
  • Irwin Bizzy Universitas Sriwijaya, Indonesia
  • Agung Mataram Universitas Sriwijaya
  • Riman Sipahutar Universitas Sriwijaya, Indonesia

DOI:

https://doi.org/10.53893/austenit.v15i2.6745

Keywords:

Heat energy, electricity energy, chimney, HRSG, TEG

Abstract

The Heat Recovery Steam Generator (HRSG) is a combination of a Gas Power Plant (PLTG) and a Steam Power Plant (PLTU), this plant utilizes exhaust gas from the PLTG to produce steam as the working fluid in the PLTU. The residual heat from the heating process at the HRSG is channeled into the chimney, and the remaining heat from the exhaust gas can be converted into electrical energy with the Thermoelectric Generator (TEG) module. This research was carried out by installing the TEG module in series on the surface of the HRSG chimney wall, using laboratory scale measurements. The heat source uses a heater with a total power of 2,000 W. The research results show that the TEG module can convert the residual heat energy of the exhaust gas from the HRSG chimney into electrical energy. Four TEG modules mounted on the chimney surface can generate a voltage of 0.83 V and a maximum power of 2.79 mW. These results indicate that the TEG module is an opportunity to convert heat energy into electrical energy for further development.

Downloads

Download data is not yet available.

References

Azharuddin, Dalom, I. R. S. (2013). Rancang Bangun Alat Boiler Kondensor. Austenit, 5, 31–36.

Balkrishan, Chand, S., Soni, A., Gupta, A., & Patel, N. K. (2016). A Review on Thermoelectric Cooler. IJIRST –International Journal for Innovative Research in Science & Technology, 2(11), 674–679. (http://www.ijirst.org/articles/IJIRSTV2I11196.pdf)

Beni Kurniawan Saputra, M Ginting, S. W. (2016). Analisa Pengaruh Penggantian Material Tube Terhadap Kecepatan , Suhu Dan Tekanan Pada Lube Oil Cooler Untuk Pendingin Compressor 103 Di Pt Pusri. Jurnal Austenit, 8, 33–35.

Bensaada, M. (2019). Experimental Investigation of Thermal E ff ect on the Characteristic Behavior of Thermoelectric Generators : Applicable as a Power Source for Low Earth Orbit Satellites. 28(4), 569–577. https://doi.org/10.1134/S181023281904012X

Ding, L. C., Meyerheinrich, N., Tan, L., Rahaoui, K., Jain, R., & Akbarzadeh, A. (2017). Thermoelectric Power Generation from Waste Heat of Natural Gas Water Heater. Energy Procedia, 110(December 2016), 32–37. https://doi.org/10.1016/j.egypro.2017.03.101

Gomaa, M. R., Murtadha, T. K., Abu-jrai, A., Rezk, H., Altarawneh, M. A., & Marashli, A. (2022). Experimental Investigation on Waste Heat Recovery from a Cement Factory to Enhance Thermoelectric Generation. Sustainability, 14(16), 10146. https://doi.org/10.3390/su141610146

Gomaa, M. R., & Rezk, H. (2020). Passive cooling system for enhancement the energy conversion efficiency of thermo-electric generator. Energy Reports, 6, 687–692. https://doi.org/10.1016/j.egyr.2020.11.149

He, W., Zhang, G., Zhang, X., Ji, J., Li, G., & Zhao, X. (2015). Recent development and application of thermoelectric generator and cooler. Applied Energy, 143, 1–25. https://doi.org/10.1016/j.apenergy.2014.12.075

Kunt, M. A., & Gunes, H. (2020). Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(1), 183–190. https://doi.org/10.1177/0954407019837786

Lashin, A., Turkestani, M. Al, & Sabry, M. (2020). Performance of a thermoelectric generator partially illuminated with highly concentrated light. Energies, 13(14), 1–12. https://doi.org/10.3390/en13143627

Liu, J., Yadav, S., & Chul, S. (2022). Case Studies in Thermal Engineering Performance of a thermoelectric generator system for waste heat recovery utilizing plate fin heat sink in bronze ingot casting industry. Case Studies in Thermal Engineering, 38(July), 102340. https://doi.org/10.1016/j.csite.2022.102340

Mirmanto, M., Tira, H. S., & Pabriansyah, A. (2020). Effect of motorcycle exhaust pipe temperature and electrical circuit on harvested dc power from thermoelectric generators. Dinamika Teknik Mesin, 10(1), 41. https://doi.org/10.29303/dtm.v10i1.319

Quan, R., Li, T., Yue, Y., Chang, Y., & Tan, B. (2020). Experimental study on a thermoelectric generator for industrialwaste heat recovery based on a hexagonal heat exchanger. Energies, 13(12). https://doi.org/10.3390/en13123137

SAM, H. (2021). Design and Modeling of a Carbon Capturing Membrane for Integrated Gasification Combined Cycle Power Plant. Austin Chemical Engineering, 8(1), 0–11. https://doi.org/10.26420/austinchemeng.2021.1084

Tohidi, F., Ghazanfari Holagh, S., & Chitsaz, A. (2022). Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 201(PA), 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793

Published

2023-10-31

How to Cite

Firmansah, H., Bizzy, I., Mataram, A., & Sipahutar, R. (2023). STUDY OF EXHAUST GAS RESIDUAL HEAT CONVERSION HRSG PLTGU KERAMASAN TO ELECTRICAL ENERGY WITH GENERATOR THERMOELECTRIC TECHNOLOGY. AUSTENIT, 15(2), 69–78. https://doi.org/10.53893/austenit.v15i2.6745

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.