THE EFFECT OF VARIATIONS SPEED OF THE CONDENSER FAN WITH CONTROL FREQUENCY INVERTER ON THE ICE SLUSH MACHINE APPLICATION

Main Article Content

Rizki Muliawan Rizki Muliawan
Septyansah .
Nur Khakim .
Bowo YP .
MA Falahuddin F
Ilham Azmy

Abstract

The condenser is one of the main components in the ice slush machine system that functions to removed heat from the system to the environment. In this system, the condenser is equipped with a fan whose rotation speed is modified using an inverter that aims to determine the system performance and condenser capacity at each fan rotation variation of the ice slush machine. There are 3 variations of frequency settings in this system 50 Hz, 40 Hz, and 30 Hz, with equivalent velocity air 3.6, 2.9, and 1.9 m/s respectively. In this study, the performance of the ice slush machine with various condenser fan speed settings was studied including, how long the product temperature is reached, condenser capacity, actual COP, efficiency, and electrical power. The test results show that the fastest product temperature is reached when using a fan speed setting of 1397 rpm, which is 145 minutes with a condenser capacity of 42.36 kW. The highest actual COP is obtained from the fan speed set at 1397 rpm of 2.58 with an efficiency of 57.5% and electrical power consumption of 269.64 W. The fan speed setting at 1090 rpm has a condenser capacity of 33.78 kW, COPactual of 2.46 with an efficiency of 56.2%, and electric power consumption of 272.09 W. The fan speed setting at 711 rpm has a condenser capacity of 21.73 kW, an actual CO of 2.15 with an efficiency of 49.2%, and electric power consumption of 312.71 W.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rizki Muliawan, R. M., ., S., ., N. K., ., B. Y., Falahuddin F, M. ., & Azmy, I. (2022). THE EFFECT OF VARIATIONS SPEED OF THE CONDENSER FAN WITH CONTROL FREQUENCY INVERTER ON THE ICE SLUSH MACHINE APPLICATION. AUSTENIT, 14(2), 86–94. https://doi.org/10.5281/zenodo.7265888
Section
Articles

References

DOE. (2015). An Assesment of energy technologies and research opportunities. Chapter 5 : increasing efficiency of building systems and Technologies.

Dossat, R. J. (1961). Principles of refrigeration.

Henry Nasution, K. S. (2014). Eksperimental study of air conditioning control system for builiding energy saving. Energy Procedia, 63–66. https://doi.org/doi:10.1016/j.egypro.2014.11.907

M. J. Moran dan H. N. Shapiro. (n.d.). Fundamentals of Engineering Thermodynamics (3rd ed.). John Willey & Sons.

Muliawan, R. (2020). Komparasi Penerapan Kinerja Inverter pada Sistem Refrigerasi dengan Alat Ekspansi Jenis TXV dan Pipa Kapiler. Teknik Energi Polban, 10(1), 7–13. DOI: https://doi.org/10.35313/energi.v10i1.2312

Muliawan, R. (2022). Predicting of refrigerant leakage in a conditioned room : a numerical study leaks distribution R-32 refrigerant in A/C Split Unit. ASEAN Engineering Journal, 12(2), 11–18. https://doi.org/10.11113/aej.v12.16499

Muliawan, R., A, A. A., Sutandi, T., & Nurrohman, N. (2021). Cooling System Performance Comparison of Refrigerant R-134a and MC-134 on Ice Slush Machine. FLYWHEEL : Jurnal Teknik Mesin Untirta, 7, 1–6. https://doi.org/10.36055/fwl.v0i0.9237

Stoecker. (1996). Refrigerasi dan Pengkondisian Udara. Erlangga.

Sumeru, K., & Sutandi, T. (2007). Penghematan energi pada mesin pendingin dengan variasi putaran kompresor. Teknik Mesin Institut Teknologi Sepuluh November, 7(2), 80–85.

Susilawati, A. S. (2017). Kajian Pengaruh Kecepatan Putar Kipas Kondenser Terhadap Konsumsi Energi Dan Kapasitas Pendinginan Mesin Tata Udara.

https://www.researchgate.net/publication/323596852_Kajian_Pengaruh_Kecepatan_Putar_Kipas_Kondenser_Terhadap_Konsumsi_Energi_Dan_Kapasitas_Pendinginan_Mesin_Tata_Udara.

Wellid, I. (2019). Kaji experimental perbandingan kinerja pengkondisi udara antara menggunakan inverter dan non-inverter. Edusaintek Unimus. https://prosiding.unimus.ac.id/index.php/edusaintek/article/view/314/317

Widiyatmoko. (2018). Desain Modifikasi AC split menjadi Ac sistem geothermal sistem terbuka. Austenit, 10(2), 67–71. https://doi.org/10.5281/zenodo.4547654.