ANALISIS SUBSISTEM RAMP UNTUK MENAIKI TANGGA PADA MOBIL ROBOT LIPI VERSI 1 (MOROLIPI V1)
Main Article Content
Abstract
Paper ini membahas secara rinci analisis sistem menaiki tangga (ramp) pada prototipe mobil robot penjinak bom versi 1 (morolipi v1). Analisis perlu dilakukan agar secara ilmiah dapat dibuktikan bahwa robot berfungsi sesuai dengan yang didesain. Analisis menggunakan pendekatan kinematika klasik untuk mendapatkan gaya dan momen yang bekerja pada mekanisme penggerak saat menaiki tangga. Berdasarkan analisis melalui simulasi dan eksperimen yang dilakukan maka dapat disimpulkan bahwa desain mobil robot dapat terbukti dapat bekerja dengan baik untuk ramp mobil robot menaiki tangga dengan kemiringan maksimal 42 derajat. Momen paling besar ketika menaiki tangga di sudut kemiringan 30 derajat dengan koefisien gesek 0,9.
Downloads
Download data is not yet available.
Article Details
How to Cite
Saputra, H. M. (2020). ANALISIS SUBSISTEM RAMP UNTUK MENAIKI TANGGA PADA MOBIL ROBOT LIPI VERSI 1 (MOROLIPI V1). AUSTENIT, 12(1), 6–13. https://doi.org/10.5281/zenodo.4547822
Section
Articles
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to AUSTENIT as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
AUSTENIT and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in AUSTENIT are the sole responsibility of their respective authors and advertisers.
References
Estiko Rijanto,”Mobil robot beroda berkemampuan melewati tangga dan tanggul”, pendaftaran paten P00200600696, 30 November 2006.
Saputra, H.M., Putera, E., & Subagio, D.G. (2016). Analisis Penggunaan Pengaruh Rantai Dan Sproket Terhadap Konsumsi Daya Motor Pada Sistem Track Mobile Robot.
Saputra, R.P., Rijanto, E., & Saputra, H.M. (2012). Trajectory Scenario Control for the Remotely Operated Mobile Robot LIPI Platform Based on Energy Consumption Analysis.
Ben-Tzvi, P., Ito, S., & Goldenberg, A. (2009). A mobile robot with autonomous climbing and descending of stairs. Robotica, 27(2), 171-188. doi:10.1017/S0263574708004426
Jianzhong Wang, Jiadong Shi, Shilong Zhang Research on a Micro Flip Robot That Can Climb Stairs, 2016, Volume: 13 issue: 2,
S.Jain, D. K. Munda, S. Majumder, D. N. Ray, S. K. Char, N. Gulgulia, Analytical Approach for Force Stability Analysis of Stair Climber, 2015, 2 nd International and 17th National Conference on Machines and Mechanisms, iNaCoMM2015-129
T.Mahadhir, K. A., Low, C. Y., Hamli, H., Jaffar, A., Salleh, E., & Bahari, M. S. (2013). Stair Climbing of a Track-Driven Mobile Robot with Flipper Arm. Applied Mechanics and Materials, 393, 586–591. https://doi.org/10.4028/www.scientific.net/amm.393.586
Tao, W., Ou, Y., & Feng, H. (2012). Research on Dynamics and Stability in the Stairs-Climbing of a Tracked Mobile Robot. International Journal of Advanced Robotic Systems, 9.
Yuan, Y., Xu, Q., & Schwertfeger, S. (2019). Configuration-Space Flipper Planning on 3D Terrain. ArXiv, abs/1909.07612.
Seo, B., Hong, S.Y., Lee, J.W., & Seo, T. (2013). Kinematic Optimal Design on a New Robotic Platform for Stair Climbing.
Pengzhan Liu, Jianzhong Wang, Xin Wang & Peng Zhao (2018): Optimal design of a stair-climbing mobile robot with flip mechanism, Advanced Robotics, DOI: 10.1080/01691864.2018.1448299
Saputra, H.M., Putera, E., & Subagio, D.G. (2016). Analisis Penggunaan Pengaruh Rantai Dan Sproket Terhadap Konsumsi Daya Motor Pada Sistem Track Mobile Robot.
Saputra, R.P., Rijanto, E., & Saputra, H.M. (2012). Trajectory Scenario Control for the Remotely Operated Mobile Robot LIPI Platform Based on Energy Consumption Analysis.
Ben-Tzvi, P., Ito, S., & Goldenberg, A. (2009). A mobile robot with autonomous climbing and descending of stairs. Robotica, 27(2), 171-188. doi:10.1017/S0263574708004426
Jianzhong Wang, Jiadong Shi, Shilong Zhang Research on a Micro Flip Robot That Can Climb Stairs, 2016, Volume: 13 issue: 2,
S.Jain, D. K. Munda, S. Majumder, D. N. Ray, S. K. Char, N. Gulgulia, Analytical Approach for Force Stability Analysis of Stair Climber, 2015, 2 nd International and 17th National Conference on Machines and Mechanisms, iNaCoMM2015-129
T.Mahadhir, K. A., Low, C. Y., Hamli, H., Jaffar, A., Salleh, E., & Bahari, M. S. (2013). Stair Climbing of a Track-Driven Mobile Robot with Flipper Arm. Applied Mechanics and Materials, 393, 586–591. https://doi.org/10.4028/www.scientific.net/amm.393.586
Tao, W., Ou, Y., & Feng, H. (2012). Research on Dynamics and Stability in the Stairs-Climbing of a Tracked Mobile Robot. International Journal of Advanced Robotic Systems, 9.
Yuan, Y., Xu, Q., & Schwertfeger, S. (2019). Configuration-Space Flipper Planning on 3D Terrain. ArXiv, abs/1909.07612.
Seo, B., Hong, S.Y., Lee, J.W., & Seo, T. (2013). Kinematic Optimal Design on a New Robotic Platform for Stair Climbing.
Pengzhan Liu, Jianzhong Wang, Xin Wang & Peng Zhao (2018): Optimal design of a stair-climbing mobile robot with flip mechanism, Advanced Robotics, DOI: 10.1080/01691864.2018.1448299