COOLING PERFORMANCE POTENTIAL OF TEC1-12710 AND TEC1-12715 SR THERMOELECTRIC MODULES WITH HOT SIDE COOLING OPTIMIZATION METHODS USING SEVERAL TYPES OF HEAT EXCHANGERS

Authors

  • Annisa Syafitri Kurniasetiawati Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Indonesia
  • Bowo Yuli Prasetyo Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Indonesia

DOI:

https://doi.org/10.53893/austenit.v16i2.9470

Keywords:

Thermoelectric, Heat Exchanger, COP, Optimization, Hot-Side Cooling

Abstract

Thermoelectric module is a mature technology that have been used in cooling applications such as special product storage cabins and cooling electronic products. Compared to the conventional technology (vapor compression systems), thermoelectric modules offer many advantages. However, in terms of cooling performance, particularly for large cooling capacities (>100Watt), thermoelectric modules still lag the conventional technology. One method that can be used to improve the cooling performance of thermoelectric modules is cooling the hot side of the module using a heat exchanger. In this study, experiments will be carried out on the TEC1-12710 and TEC1-12715 SR modules which alternately combined with five types of heat exchangers on the hot side of the module, connected by thermal paste. The types of heat exchangers used are Square HE, Round HE, Two-Pipe HE, Four-Pipe HE, and Liquid-Cooler HE. The experiments are carried out with operating voltage variations of 12V, 9V and 6V for each thermoelectric module. The data analysis results found that the best COP value was obtained by the TEC1-12715 SR thermoelectric module with the Round type Heat Exchanger of 0.767 at a voltage of 6V. For the TEC1-12710 thermoelectric module, the highest COP value was also obtained when the module was paired with a Round type Heat Exchanger at a voltage of 6V, with a value of 0.620. Additionally, the highest heat absorption value for both thermoelectric modules was obtained at a voltage of 12V using the Round type heat exchanger, namely 19.61 Watts (TEC1-12710) and 26.98 Watts (TEC1-12715 SR), respectively.

Downloads

Download data is not yet available.

References

Alldatasheet. (2024). Electronic Components Datasheet Search. https://www.alldatasheet.com/datasheet-pdf/pdf/739991/HB/TEC1-12715.html#:~:text=TEC1-

12715%20Download.

Baldry, M., Timchenko, V., & Menictas, C. (2019). Optimal design of a natural convection heat sink for small thermoelectric cooling modules. Applied Thermal Engineering, 160. https://doi.org/10.1016/j.applthermaleng.2019.114062

Bamroongkhan, P., Lertsatitthanakorn, C., Sathapornprasath, K., & Soponronnarit, S. (2021). Experimental performance of a photovoltaic-assisted solar parabolic dish thermoelectric system. Case Studies in Thermal Engineering, 27, 101280. https://api.semanticscholar.org/CorpusID:237718297

Demeke, W., Ryu, B., & Ryu, S. (2024). Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties. Applied Energy, 355, 122216. https://doi.org/https://doi.org/10.1016/j.apenergy.2023.122216

Faraz Ahmad, F., Ghenai, C., Al Bardan, M., Bourgon, M., & Shanableh, A. (2022). Performance analysis of atmospheric water generator under hot and humid climate conditions: Drinkable water production and system energy consumption. Case Studies in Chemical and Environmental Engineering, 6, 100270. https://doi.org/https://doi.org/10.1016/j.cscee.2022.100270

Firmansah, H., Bizzy, I., Mataram, A., & Sipahutar, R. (2023). Study of Exhaust Gas Residual Heat Conversion Hrsg PLTGU Keramasan To Electrical Energy With Generator Thermoelectric Technology. Austenit, 15(2), 69–78. https://doi.org/10.53893/austenit.v15i2.6745

Kuang, C., Hu, Z., Yuan, Z., Wen, K., Qing, J., Kobera, L., Abbrent, S., Brus, J., Yin, C., Wang, H., Xu, W., Wang, J., Bai, S., & Gao, F. (2021). Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 5(3), 618–630. https://doi.org/https://doi.org/10.1016/j.joule.2021.01.003

Mainil, A. K., Aziz, A., & Akmal, M. (2018). Portable Thermoelectric Cooler Box Performance with Variation of Input Power and Cooling Load. Aceh International Journal of Science andTechnology, 7(2), 85–92. https://doi.org/10.13170/aijst.7.2.8722

Prasetyo, B. Y., Badarudin, A., Sukamto, A. P. E., & Muliawan, R. (2022). Investigasi Eksperimental Performa Sistem Pendingin Multi-Termoelektrik dengan Konfigurasi Termal Seri dan Paralel. JTT (Jurnal Teknologi Terapan). https://api.semanticscholar.org/CorpusID:257970161

Prasetyo, B. Y., Rosulindo, P. P., & Wang, F. (2024). Thermal Performance Investigation of Thermoelectric Cooling System with Various Hot-Side Cooling Methods. Makara Journal of Technology, 28(1). https://doi.org/10.7454/mst.v28i1.1621

Pratama, F. R., & Saraswati, V. (2023). Design of Thermoelectric Peltier Effect Demonstrator using Modul TEC-12706 and TEG-SP1848. Physics Education Research Journal, 5(1), 1–6. https://doi.org/10.21580/perj.2023.5.1.12552

Putra, N. S. D., Yanuar, & Iskandar, F. N. (2011). Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Science, 35, 1274–1281. https://api.semanticscholar.org/CorpusID:122511279

Rahmawaty, M., Fauzan, M. H., & Hendriko, H. (2024). Rancang Bangun Sistem Pendingin Dan Pencuci Pada Mesin Pengolah Biodiesel Dengan Bahan Baku Minyak Jelantah. Austenit, 16(1), 1–8. https://doi.org/10.53893/austenit.v16i1.6774

Shabgard, H., Allen, M. J., Sharifi, N., Benn, S. P., Faghri, A., & Bergman, T. L. (2015). Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art. In International Journal of Heat and Mass Transfer (Vol. 89, pp. 138–158). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020

Srimuang, W., & Amatachaya, P. (2012). A review of the applications of heat pipe heat exchangers for heat recovery. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 6, pp. 4303–4315). https://doi.org/10.1016/j.rser.2012.03.030

Tang, Y., Jin, D., Wang, Z., & Han, F. (2023). The extreme high cooling capacity thermoelectric cooler optimal design for kilowatts scale thermoelectric air-conditioner of high-speed railway carriage. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.11.011

Published

2024-11-30

How to Cite

Kurniasetiawati, A. S., & Prasetyo, B. Y. (2024). COOLING PERFORMANCE POTENTIAL OF TEC1-12710 AND TEC1-12715 SR THERMOELECTRIC MODULES WITH HOT SIDE COOLING OPTIMIZATION METHODS USING SEVERAL TYPES OF HEAT EXCHANGERS. AUSTENIT, 16(2), 100–110. https://doi.org/10.53893/austenit.v16i2.9470

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.