Conversion of CO2 to Methane (CH4) using Ni-Al Based Catalyst and Mg as Promoter via Methanation Process

Authors

  • Sebastian Hadinata Chemical Engineering Department, Politeknik Negeri Sriwijaya
  • Robert Junaidi Chemical Engineering Department, Politeknik Negeri Sriwijaya
  • Fadarina Chemical Engineering Department, Politeknik Negeri Sriwijaya

Keywords:

CO2 conversion, Methanation, Nickel, Alumina, Gas Analyzer

Abstract

The increase of CO2 gas in the atmosphere, which can cause climate change, is one of the reasons for converting it into value-added chemicals and renewable fuels. One way to reduce CO2 in the atmosphere is to capture and store CO2. The conversion of CO2 into chemical fuels can be a method to reduce the problem of global warming and provide alternative chemical fuels.The purpose of this research is to obtain methane gas through the CO2 methanation process. Methane gas is produced using nickel-alumina based catalyst and Mg as promoter. The CO2 methanation process is carried out in a 500ml Erlenymeyer flask with CO2 gas flowing from the CO2 tube as the raw material in the process. In this research, the amount of catalyst is adjusted by varying the ratio of Nickel-Alumina catalyst 1:1, 1:2, and 1:3, 2:1, 3:1. Analysis of the methane content was used a Multi Gas Detector Analyzer and for catalyst used X-Ray Diffractionmeter. It is obtained from the research result that the most optimum variation of the Nickel-Alumina catalyst ratio is at the ratio of 3:1. The CO2 conversion to CH4 from the methanation process by using 3:1 Nickel-Alumina ratio also has a significant percentage of 1.82% for the methane content and 0.2% for the CO2 content.

References

M. T. Ballew et al., “Climate Change in the American Mind: Data, Tools, and Trends,” Environ. Sci. Policy Sustain. Dev., vol. 61, no. 3, pp. 4–18, May 2019, doi: 10.1080/00139157.2019.1589300.

Emisi Gas Karbondioksida, dan Produk Domestik Bruto,” J. Reformasi Adm. J. Ilm. untuk Mewujudkan Masy. Madani, vol. 7, no. 1, pp. 9–16, 2020, [Online]. Available: http://ojs.stiami.ac.id

Z.Yu, K. Stangeland, D. Kalai, H. Li. CO2 methanation: the effect of catalyst and reaction conditions. ICAE2016 pp. 2022-2027. 2017. doi: 10.1016/j.egypro.2017.03.577.

H.K. dan Suyanti, R.D. 2010. Kimia Anorganik Logam. Edisi Pertama. Jakarta: Gaha Ilmu.

Equilibrium acidities in dimethyl sulfoxide solution Frederick G. Bordwell Acc. Chem. Res. 1988; 21(12) pp 456 – 463; doi:10.1021/ar00156a004

Hamilton JT, McRoberts WC, Keppler F, Kalin RM, Harper DB (July 2003). Chloride methylation by plant pectin: an efficient environmentally significant process. Science 301 (5630): 206–9. Bibcode:2003Sci...301..206H.doi:10.1126/science.1085036. PMID 12855805.

John Roach. 2002-05-13. New Zealand Tries to Cap Gaseous Sheep Burps. National Geogaphic. Retrieved 2011-03-02.

M. Rossberg et al. Chlorinated Hydrocarbons in Ullmann’s Encyclopedia of Industrial Chemistry. 2006, Wiley-VCH, Weinheim.doi:10.1002/14356007.a06_233.pub2

Siswanto, R. 2014. Analisis Pengaruh Temperatur dan Waktu Peleburan terhadap Komposisi Al dan Mg Menggunakan Metode Pengecoran Tuang. Proceedings Seminar Nasional Teknik Mesin Universitas Trisakti Gd. Hery Hartanto Teknik Mesin - FTI – Sugiyarto Usakti. Jakarta. 1-6.

H.K. dan Suyanti, R.D. 2010. Kimia Anorganik Logam. Edisi Pertama. Jakarta: Gaha Ilmu.

Wesley H. Bernskoetter, Cynthia K. Schauer, Karen I. Goldberg and Maurice Brookhart Characterization of a Rhodium(I) σ-Methane Complex in Solution Science 2009, Vol. 326, pp. 553–556. doi:10.1126/science.1177485

Additional Files

Published

2023-11-30

How to Cite

Sebastian Hadinata, Robert Junaidi, & Fadarina. (2023). Conversion of CO2 to Methane (CH4) using Ni-Al Based Catalyst and Mg as Promoter via Methanation Process. Journal of Industrial, Energy and Environment Technology, 1(1), 24–28. Retrieved from https://jurnal.polsri.ac.id/index.php/JIEETech/article/view/7031