BIOCOMPATIBLE P(TM co SA-CAA) HYDROGELS WITH pH RESPONSIVE AND ENHANCED MECHANICAL PERFORMANCE

Main Article Content

gustini gustini
Kaprawi Kaprawi
Hasan Basri
Irmawan Irmawan
Irsyadi Yani
Nurhabibah Paramita Eka Utami

Abstract

In recent years, development of hydrogel that combines biocompatibility, pH responsive and mechanical performance has attracted the attention of researchers. A novel biocompatible hydrogel, composed of P(TM co SA) and P(TM co CAA) was synthesized by a simple admixture and heating process. The results show that with increasing levels of SA-CAA monomer concentration, an increase in tensile strength and elongation at breakpoint was observed and optimal at the ratios P(TM co SA CAA). Tensile strenght and young’s modulus registered an impressive increase of 43% and 40% respectively. These improvements are attributed to strong synergistic hydrogen bonding interactions between the TM and SA-CAA chains. During the experiment, maximum increase in weight was also achieved at pH 10 NaOH solution, it is show the pH-responsive hydrogels. The investigation of P(TM co SA-CAA) hydrogel mechanism showed that more homogenous dispersed through crosslinks dominated by β-sheets from Amide I structures. Furthermore, the SA-CAA molecules contributed to the biocompatibility, pH responsive and mechanical performance of P(TM co SA-CAA) hydrogels. Conclusively, its P(TM co SA-CAA) hydrogels clearly demonstrated the relevance of the provide a bioresponsive material for biomedical applications, such as tissue engineering, regenerative medicine and pH-sensitive drug delivery.     

Downloads

Download data is not yet available.

Article Details

How to Cite
gustini, gustini, Kaprawi, K., Basri, H. ., Irmawan, I., Yani, I., & Paramita Eka Utami, N. . (2023). BIOCOMPATIBLE P(TM co SA-CAA) HYDROGELS WITH pH RESPONSIVE AND ENHANCED MECHANICAL PERFORMANCE. AUSTENIT, 15(2), 125–133. https://doi.org/10.5281/zenodo.10060585
Section
Articles

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Cell movements and the shaping of the vertebrate body. In Molecular Biology of the Cell. 4th edition: Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK21054/

Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., . . . Khademhosseini, A. J. A. m. (2014). 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. 26(1), 85-124. https://doi.org/10.1002/adma.201303233

Barcellona, M. N., Johnson, N., & Bernards, M. T. J. L. (2015). Characterizing drug release from nonfouling polyampholyte hydrogels. 31(49), 13402-13409. https://doi.org/10.1021/acs.langmuir.5b03597

Barth, A. J. B. e. B. A.-B. (2007). Infrared spectroscopy of proteins. 1767(9), 1073-1101. https://doi.org/10.1007/s11340-021-00741-6

Blackman, L. D., Gunatillake, P. A., Cass, P., & Locock, K. E. J. C. S. R. (2019). An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. 48(3), 757-770. https://doi.org/10.1039/C8CS00508G

Cao, S., Barcellona, M. N., Pfeiffer, F., & Bernards, M. T. J. J. o. A. P. S. (2016). Tunable multifunctional tissue engineering scaffolds composed of three‐component polyampholyte polymers. 133(40). https://doi.org/10.1002/app.43985

Censi, R., Di Martino, P., Vermonden, T., & Hennink, W. E. J. J. o. C. R. (2012). Hydrogels for protein delivery in tissue engineering. 161(2),680-692. https://doi.org/10.1016/j.jconrel.2012.03.002

Colilla, M., Izquierdo-Barba, I., & Vallet-Regí, M. J. M. (2018). The role of zwitterionic materials in the fight against proteins and bacteria. 5(4), 125. https://doi.org/10.3390/medicines5040125

Costa, A. M., & Mano, J. F. J. E. P. J. (2015). Extremely strong and tough hydrogels as prospective candidates for tissue repair–A review.72,344-364. https://doi.org/10.1016/j.eurpolymj.2015.07.053

Discher, D. E., Janmey, P., & Wang, Y.-l. J. S. (2005). Tissue cells feel and respond to the stiffness of their substrate. 310(5751), 1139-1143. DOI: 10.1126/science.1116995

Dobbins, S. C., McGrath, D. E., & Bernards, M. T. J. T. J. o. P. C. B. (2012). Nonfouling hydrogels formed from charged monomer subunits. 116(49),14346-14352. https://doi.org/10.1021/jp307588b

Erathodiyil, N., Chan, H.-M., Wu, H., & Ying, J. Y. J. M. T. (2020). Zwitterionic polymers and hydrogels for antibiofouling applications in implan table devices. 38, 84-98. https://doi.org/10.1016/j.mattod.2020.03.024

Gao, X., Shi, Z., Liu, C., Yang, G., Sevostianov, I., & Silberschmidt, V. V. J. P. T. (2015). Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests. 44, 82-92. https://doi.org/10.1016/j.polymertesting.2015.03.021

Guilak, F., Butler, D. L., Goldstein, S. A., & Baaijens, F. P. J. J. o. b. (2014). Biomechanics and mechanobiology in functional tissue engineering. 47(9), 1933-1940. https://doi.org/10.1016/j.jbiomech.2014.04.019

Haag, S. L., & Bernards, M. T. J. L. (2020). Enhanced biocompatibility of polyampholyte hydrogels. 36(13), 3292-3299. https://doi.org/10.1021/acs.langmuir.0c00114

Hershfield, M. S., Ganson, N. J., Kelly, S. J., Scarlett, E. L., Jaggers, D. A., Sundy, J. S. J. A. r., & therapy. (2014). Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients.16(2),1-11. https://doi.org/10.1186/ar4500

Jain, M., Matsumura, K. J. M. S., & C, E. (2016). Thixotropic injectable hydrogel using a polyampholyte and nanosilicate prepared directly after cryopreservation. 69, 1273-1281. https://doi.org/10.1016/j.jhazmat.2010.06.098

Jankaew, R., Rodkate, N., Lamlertthon, S., Rutnakornpituk, B., Wichai, U., Ross, G., & Rutnakornpituk, M. J. P. T. (2015). “Smart” carboxymethylchitosan hydrogels crosslinked with poly (N-isopropylacrylamide) and poly (acrylic acid) for controlled drug release. 42, 26-36. https://doi.org/10.1016/j.polymertesting.2014.12.010

Kong, J., & Yu, S. J. A. b. e. b. S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. 39(8), 549-559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

Li, C.-P., Weng, M.-C., & Huang, S.-L. J. P. (2020). Preparation and characterization of pH sensitive Chitosan/3-Glycidyloxypropyl Trimethoxysilane (GPTMS) hydrogels by sol-gel method. 12(6), 1326. DOI: 10.3390/polym12061326

Li, H., Wu, R., Zhu, J., Guo, P., Ren, W., Xu, S., & Wang, J. J. J. o. P. S. P. B. P. P. (2015). pH/temperature double responsive behaviors and mechanical strength of laponite‐crosslinked poly (DEA‐co‐DMAEMA) nanocomposite hydrogels. 53(12), 876-884. https://doi.org/10.1002/polb.23713

Li, Y., & Kumacheva, E. J. S. a. (2018). Hydrogel microenvironments for cancer spheroid growth and drug screening. 4(4), eaas8998. https://doi.org/10.1002/polb.23713

Lin, C.-C., & Anseth, K. S. J. P. r. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. 26, 631-643. DOI: 10.1126/sciadv.aas8998

Lubich, C., Allacher, P., de la Rosa, M., Bauer, A., Prenninger, T., Horling, F. M., . . . Reipert, B. M. J. P. r. (2016). The mystery of antibodies against polyethylene glycol (PEG)-what do we know? , 33, 2239-2249. https://doi.org/10.1007/s11095-016-1961-x

Luong, P., Browning, M., Bixler, R., & Cosgriff‐Hernandez, E. J. J. o. B. M. R. P. A. (2014). Drying and storage effects on poly (ethylene glycol) hydrogel mechanical properties and bioactivity. 102(9), 3066-3076. doi: 10.1002/jbm.a.34977

Mariner, E., Haag, S. L., & Bernards, M. T. J. B. (2019). Impacts of cross-linker chain length on the physical properties of polyampholyte hydrogels. 14(3). https://doi.org/10.1116/1.5097412

Philippova, O., Barabanova, A., Molchanov, V., & Khokhlov, A. J. E. p. j. (2011). Magnetic polymer beads: Recent trends and developments in synthetic design and applications. 47(4), 542-559. https://doi.org/10.1016/j.eurpolymj.2010.11.006

Schroeder, M. E., Zurick, K. M., McGrath, D. E., & Bernards, M. T. J. B. (2013). Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity. 14(9), 3112-3122. https://doi.org/10.1021/bm4007369

Seliktar, D. J. S. (2012). Designing cell-compatible hydrogels for biomedical applications. 336(6085), 1124-1128. DOI: 10.1126/science.1214804

Su, E., & Okay, O. J. E. P. J. (2017). Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. 88, 191-204. https://doi.org/10.1016/j.eurpolymj.2017.01.029

Sun, T. L., Kurokawa, T., Kuroda, S., Ihsan, A. B., Akasaki, T., Sato, K., Gong, J. P. J. N. m. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. 12(10), 932-937. DOI: 10.1038/nmat3713

Tagami, T., Uehara, Y., Moriyoshi, N., Ishida, T., & Kiwada, H. J. J. o. C. R. (2011). Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. 151(2), 149-154. https://doi.org/10.1016/j.jconrel.2010.12.013

Tah, T., Bernards, M. T. J. C., & Biointerfaces, S. B. (2012). Nonfouling polyampholyte polymer brushes with protein conjugation capacity. 93, 195-201. https://doi.org/10.1016/j.colsurfb.2012.01.004

Takahashi, S. H., Lira, L. M., & de Torresi, S. I. C. (2012). Zero-order release profiles from a multistimuli responsive electro-conductive hydrogel. DOI:10.4236/jbnb.2012.322032

Tao, Y., Wang, S., Zhang, X., Wang, Z., Tao, Y., & Wang, X. J. B. (2018). Synthesis and properties of alternating polypeptoids and polyampholytes as protein-resistant polymers. 19(3), 936-942. https://doi.org/10.1021/acs.biomac.7b01719

Wong, V. W., Akaishi, S., Longaker, M. T., & Gurtner, G. C. J. J. o. I. D. (2011). Pushing back: wound mechanotransduction in repair and regeneration. 131(11), 2186-2196. https://doi.org/10.1038/jid.2011.212

Xiang, H., Xia, M., Cunningham, A., Chen, W., Sun, B., & Zhu, M. J. J. o. t. M. B. o. B. M. (2017). Mechanical properties of biocompatible clay/P (MEO2MA-co-OEGMA) nanocomposite hydrogels. 72, 74-81. https://doi.org/10.1016/j.jmbbm.2017.04.026

Yue, Y. F., Haque, M. A., Kurokawa, T., Nakajima, T., & Gong, J. P. J. A. m. (2013). Lamellar hydrogels with high toughness and ternary tunable photonic stop‐band. 25(22), 3106-3110. https://doi.org/10.1002/adma.201300775.

Most read articles by the same author(s)