Efisiensi Termal Alat Pengering Tipe Tray Dryer Untuk Pengeringan Silika Gel Berbasis Ampas Tebu

Nur Annisa Yuliasdini, Suci Utami Putri, Tasya Athira Makaminan, Selatia Yuliati, Fadarina .

Sari


The silica gel drying process is one of the factors that determine the quality of the products produced. The dryer tray can be used to dry material in the form of thick solids or solids such as pasta, where the material to be dried can be spread evenly on the drying racks. In this study, the performance of the dryer is reviewed by obtaining its thermal efficiency, where thermal efficiency is the percentage of the amount of heat used in the drying process of silica gel made from bagasse and in accordance with the standards of JIS-0701. The design research method of the tray dryer tool is to carry out a functional design approach to know the functions of the unit of equipment used and through a structural approach to obtain the dimensions of the tool. Furthermore, data collection was carried out on the condition of the silica gel drying operation made from bagasse raw material and then poured in mass balance and energy balance. Based on the results of the calculation of thermal drying efficiency to dry the silica gel that the longer the drying process, the lower the thermal efficiency produced. The highest thermal efficiency is in the drying process for 60 minutes, which is 86.4%. The optimum condition for drying silica gel made from sugarcane pulp according to standard JIS-0701 is with a drying time of 360 minutes, drying rate of 0.019 𝑘𝑔/ℎ𝑟.𝑚2, and water content of 0.81%. The Si-OH function group in silica gel produced through XRD and FTIR analysis is in the amorphous form.

Kata Kunci


Bagasse, Silica Gel, Tray Dryer, Thermal Efficiency

Teks Lengkap:

PDF

Referensi


Buckle, K. A., Edwards, R. A., Fleet, G. H., dan Wotton, M. 1987. Ilmu Pangan. Penerjemah Hari Purnomo dan Adiono. Universitas Indonesia Press. Jakarta.

Hastuti, S., Nuryono, dan Agus, K. 2015. L-Ariginin Modified Silica for Adsorption of Gold (III). Indonesian Journal Chemistry 15(2), 108-115. Yogyakarta: Universitas Gajah Mada.

Holman, J.P. 1995. Perpindahan Panas. Erlangga. Edisi keenam. Jakarta.

Joko, W.K., Juliaty, L dan Sri, R. 2009. Pengaruh Suhu dan Lama Penyangraian Terhadap Sifat Fisik-Mekanis Biji Kopi Robusta. Makalah. Disajikan pada Seminar Nasional Peran

Kothandaraman, C. P. 2006. Fundamentals Heat and Mass Transfer. 3rd edition. New Age International (P) Ltd. India.

Muarif. 2013. Rancang Bangun Alat Pengering. Politeknik Negeri Sriwijaya. Palembang.

Mujumdar. 2011. Proses Pengeringan (Full Sun Drying). Universitas Diponogoro. Semarang.

Purnawan, C., Tri, M., dan Ima, P. 2018. Sintesis dan Karakterisasi Silika Abu Ampas Tebu Termodifikasi Ariginin sebagai Adsorben Ion Logam Cu (II). Surakarta: FMIPA Universitas Negeri Sebelas Maret.

Rompas, G.P., Pangouw, J.D., Pandeleke, R., dan Mangare, J.B., 2013. Pengaruh Pemanfaatan Abu Ampas Tebu sebagai Subsitusi Parsial Semen dalam Campuran Beton Ditinjau Terhadap Kuat Tarik Lentur dan Modulus Elastisitas. Jurnal Sipil Statik 1(2), 82-89. Manado: FT Universitas Sam Ratulangi.

Saiful, A, Jamaluddin, dan Rais, M. 2018. Laju Pindah Panas dan Massa pada Proses Pengeringan Gabah Menggunakan Alat Pengering Tipe Bak (Batch Dryer). Jurnal Pendidikan Teknologi Pertanian. Universitas Negeri Makassar.

Taib, G. 2013, Operasi Pengeringan pada Pengolahan Hasil Pertanian, PT. Mediyatama Sarana Perkasa, Jakarta.


Article Metrics

Sari view : 38 times
PDF - 66 times

Refbacks

  • Saat ini tidak ada refbacks.