Analisis Eksergi Pada Kolektor Surya Pelat Datar
Kata Kunci:
Renewable Energy, Solar Water Heater, Intensity of Solar Radiation, Serpentine Tube Solar Water HeaterAbstrak
The use of Liquefied Petroleum Gas (LPG) as an energy source for cooking in Indonesia is estimated at 63.1 MBOE in 2020. One form of LPG utilization is generally heating air, both conventional and using water heaters. Limited domestic supply requires substitution to other types of energy specifically renewable energy. The intensity of solar radiation reaching the earth at 1367 W/m2 provide great potential for the utilization of solar energy through solar water heater as a source of water heating. The study was conducted with serpentine tube arrangement and using 0.5 liters/minute continuous flow rate which is analyzed by the 2nd law of thermodynamic. This study also aims to analyze the effect of solar intensity to differences temperature of collectors, the amount of exergy gain for heating the water and the effect of solar intensity to exergy destruction. From the research, it was found that the higher solar intensity, the higher the temperature difference between input and output and exergy destruction. The highest efficiency is 3,2%. The low efficiency of collectors is caused by the higher exergy destruction.Referensi
Chamoli, S. (2013). Exergy Analysis of a Flat Plate Solar Collector. Journal of Energy in Southern Africa.
Farahat, H. A. (2009). Exergetic Optimization of Flat Plate Solar Collectors. Renewable Energy Journal.
Ge, Zhong.,Wang, H., Wang, H., Zhang, S., dan Guan, X. (2014). Exergy Analysis of Flat Plate Solar Collectors. Entropy, 2549-2567.
Hasan, M., Mahadi, M., Miyazaki, T., Koyama, S., dan Thu, K. (2018). Exergy Analysis of Serpentine Thermosyphon Solar Water Heater. Applied Sciences.
Kadir, A. (1995). ENERGI: Sumber Daya, Inovasi, Tenaga Listrik dan Potensi Ekonomi. Jakarta: Penerbit Universitas Indonesia.
Mahadi, H., M, F., Ahammed, Huque, dan Kibria. (2014). Construction, Fabrication, and Performance Analysis of an Indigenously Built Serpentine Type Thermoshyphon Solar Water Heater. 3rd International Conference on The Development in Renewable Energy Technology (ICDRET), (pp. 2-7). Dhaka.
Marbun. 2009. Optimasi Jumlah Pipa-Pemanas Terhadap Kinerja Kolektor Surya Pemanas Air. Jurnal Teknologi. Vol.1, No.1.
Padilla, R., Fontalvo, A., Demirkaya, G., Martinez, A., dan Quiroga, A. (2014). Exergy Analysis of Parabolic Trough Solar Receiver. Application Thermal Engineering.
Purnama, R., Kurniawan, E., dan Ashari. (2015). Perancangan Alat Peraga Kolektor Surya Pemanas Air Guna Menjelaskan Suhu dan Kalor pada Kelas X SMA Muhammadiyah Purworejo. Jurnal Pendidikan.
Sukhatme, S., dan J K, N. (1993). Solar Energy. New York: McGraw-Hil.
Sidopekso, S. (2011). Studi Pemanfaatan Energi Matahari Sebagai Pemanas Air. Berkala Fisika, 23-26.
Sumarsono, M. (2005). Optimasi Jumlah Pipa Pemanas terhadap Kinerja Kolektor Surya Pemanas Air. Jurnal Ilmiah Teknologi Energi.
Sutarno. (2013). Sumber Daya Energi. Yogyakarta: Graha Ilmu.
Vinubhai, T., R, J., dan Thakkar, K. (2014). A Review : Solar Water Heating Systems. National Conference on Emerging Vista of Technology in 21st Century (pp. 1-8). Gujarat: NCEVT.
Vinubhai, T., R, J., dan Thakkar, K. (2014). Review: Solar Water Heating System. Emerging Vista of Technology in 21st Century (pp. 1-8). India: NEEVI.
Wiyana, G. (2012). Pemanfaatan Energi Surya. JPTK, UNDIKSHA, 37-46.
Farahat, H. A. (2009). Exergetic Optimization of Flat Plate Solar Collectors. Renewable Energy Journal.
Ge, Zhong.,Wang, H., Wang, H., Zhang, S., dan Guan, X. (2014). Exergy Analysis of Flat Plate Solar Collectors. Entropy, 2549-2567.
Hasan, M., Mahadi, M., Miyazaki, T., Koyama, S., dan Thu, K. (2018). Exergy Analysis of Serpentine Thermosyphon Solar Water Heater. Applied Sciences.
Kadir, A. (1995). ENERGI: Sumber Daya, Inovasi, Tenaga Listrik dan Potensi Ekonomi. Jakarta: Penerbit Universitas Indonesia.
Mahadi, H., M, F., Ahammed, Huque, dan Kibria. (2014). Construction, Fabrication, and Performance Analysis of an Indigenously Built Serpentine Type Thermoshyphon Solar Water Heater. 3rd International Conference on The Development in Renewable Energy Technology (ICDRET), (pp. 2-7). Dhaka.
Marbun. 2009. Optimasi Jumlah Pipa-Pemanas Terhadap Kinerja Kolektor Surya Pemanas Air. Jurnal Teknologi. Vol.1, No.1.
Padilla, R., Fontalvo, A., Demirkaya, G., Martinez, A., dan Quiroga, A. (2014). Exergy Analysis of Parabolic Trough Solar Receiver. Application Thermal Engineering.
Purnama, R., Kurniawan, E., dan Ashari. (2015). Perancangan Alat Peraga Kolektor Surya Pemanas Air Guna Menjelaskan Suhu dan Kalor pada Kelas X SMA Muhammadiyah Purworejo. Jurnal Pendidikan.
Sukhatme, S., dan J K, N. (1993). Solar Energy. New York: McGraw-Hil.
Sidopekso, S. (2011). Studi Pemanfaatan Energi Matahari Sebagai Pemanas Air. Berkala Fisika, 23-26.
Sumarsono, M. (2005). Optimasi Jumlah Pipa Pemanas terhadap Kinerja Kolektor Surya Pemanas Air. Jurnal Ilmiah Teknologi Energi.
Sutarno. (2013). Sumber Daya Energi. Yogyakarta: Graha Ilmu.
Vinubhai, T., R, J., dan Thakkar, K. (2014). A Review : Solar Water Heating Systems. National Conference on Emerging Vista of Technology in 21st Century (pp. 1-8). Gujarat: NCEVT.
Vinubhai, T., R, J., dan Thakkar, K. (2014). Review: Solar Water Heating System. Emerging Vista of Technology in 21st Century (pp. 1-8). India: NEEVI.
Wiyana, G. (2012). Pemanfaatan Energi Surya. JPTK, UNDIKSHA, 37-46.
Unduhan
Diterbitkan
2020-11-03
Terbitan
Bagian
Articles