Accuracy of Testing Model Training Results using YOLOv4 for Vehicle Recognition on Highways

Authors

  • Ahmad Fali Oklilas jurusan sistem komputer fakultas ilmu komputer universitas sriwijaya
  • sukemi jurusan sistem komputer fakultas ilmu komputer universitas sriwijaya
  • Dinda Dwinta Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya
  • Ghinadhia Shofi Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya
  • Nanda Putri Mariza Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya
  • Sri Arum Kinanti Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya
  • Yulia Amanda Sari Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya

DOI:

https://doi.org/10.5281./6537/15.jupiter.2023.04

Abstract

Traffic congestion is currently the main problem that occurs in big cities in Indonesia.
Traffic flow analysis is an important basis for urban planning. Management of Intelligent
Transportation System (ITS) has become a necessity today to manage heavy traffic problems.
Intelligent transportation systems using computer vision techniques are increasingly attracting
attention for traffic density detection. This research uses the You Only Look Once (YOLO version
4 object detection method for vehicle classification and detection to obtain an optimal model.
Testing the YOLOv4 model results in a mean average precision (mAP) of 80.12%. In video testing
to detect motorcycles and cars, the total vehicle accuracy is 70.6% and the vehicle confidence
level is 78.7%.

Downloads

Download data is not yet available.

Published

2023-05-28

How to Cite

Ahmad Fali Oklilas, sukemi, Dinda Dwinta, Ghinadhia Shofi, Nanda Putri Mariza, Sri Arum Kinanti, & Yulia Amanda Sari. (2023). Accuracy of Testing Model Training Results using YOLOv4 for Vehicle Recognition on Highways. JUPITER: Jurnal Penelitian Ilmu Dan Teknologi Komputer, 15(1d), 799–806. https://doi.org/10.5281./6537/15.jupiter.2023.04

Most read articles by the same author(s)